博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
2015百度之星 单调区间
阅读量:5997 次
发布时间:2019-06-20

本文共 3174 字,大约阅读时间需要 10 分钟。

单调区间

 

Time Limit: 2000/1000 MS (Java/Others)

Memory Limit: 65536/65536 K (Java/Others)

 

Problem Description

百小度最近在逛博客,然后发现了一个有趣的问题。 如下图所示,是一个12位数$014326951987$, 它的数字先逐渐变大, 然后变小,再变大,接着变小,又变大,最后变小。我们就称,其共包含6个单调区间。 

现在问题来了:一个n位数平均包含多少个单调区间?单调区间的平均长度又是多少? 因为我们考虑到这样的数样本太大,有10^{n}这么多,所以百小度决定缩小样本,假定任意两位相邻数字不能相同,而且这个n位数允许以0开头。现在我已经将样本大小已经被缩小到10*9^{n-1},接下来把这个问题交给你,请你开启大脑挖掘机,挖挖答案在哪里。

Input

第一行为T,表示输入数据组数。 下面T行,每行包含一个正整数n,n为不大于100000的正整数。

Output

对第i组数据,输出 Case #i: 然后输出两个实数,用空格隔开,分别为平均单调区间数和单调区间平均长度,结果保留六位小数。

Sample Input

2212

Sample Output

Case #1:1.000000 2.000000Case #2:8.037037 2.368664

Problem's Link:   http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=584&pid=1006


 

Mean: 

analyse:

水题,找规律。

考虑这么一个 14 位数 02565413989732 ,如图所示,它的数字先逐渐变大,然后开始变小,再变大,再变小,再变大,再变小。我们就说,它一共包含了 6 个单调区间。我们的问题就是:一个 n 位数平均有多少个单调区间?为了避免歧义,我们假设任意两位相邻的数字都不相同,因而像 77765589911 这样的数我们就不考虑了。另外,大家可能已经注意到了,我们允许这个 n 位数以数字 0 开头。因而,更精确地说,我们的问题是:相邻数字都不相同的、允许以 0 开头的所有 n 位数当中,平均有多少个单调区间?

 

这个题目来自 1987 年 IMO 候选题。

让我们把所有这种 n 位数的个数记作 N 。那么 N 等于多少?这个 n 位数的第一位有 10 种选择,今后的每一位都只有 9 种选择(因为要跟前一位不一样),因而 n 位数一共有 N = 10 · 9n-1 个。接下来,我们要求的就是,所有 n 位数当中的所有单调区间一共有多少个。我们换一种方法来累计这些单调区间:先算所有从第一位开始的单调区间,再算所有从第二位开始的单调区间,等等,最后算所有从第 n 位开始的单调区间。如果用 ri 来表示所有从第 i 位开始的单调区间的数目,那么我们要求的平均单调区间数就是 (r1 + r2 + … + rn) / N ,也就是 r1 / N + r2 / N + … + rn / N 。注意到其中的每一项 ri / N 其实就是从 N 个合法的 n 位数中任取一个后,存在以第 i 位数打头的单调区间的概率。因此,我们只需要求出这 n 个概率值,加起来便是我们想要的答案了。

显然, r1 / N = 1 ,因为第一位数字必然会引领一个单调区间。显然, rn / N = 0 ,因为最后一位数字不可能引领一个新的单调区间。那么,对于其他的 ri / N 呢?注意到,第 i - 1 位、第 i 位和第 i + 1 位的大小关系一共可能有以下四种情况:

其中,只有第三种情况和第四种情况下,第 i 位才会成为一个新的单调区间的开始。为了计算这两种情况发生的概率,我们只需要算出情况 1 和情况 2 发生的概率,再用 1 来减即可。情况 1 发生的概率有多大呢?三位数字串一共有 10 · 92 个(第一位有 10 种选择,后面的每一位都只有 9 种选择,因为要跟前一位不一样)。为了得到递增的数字串,我们只需要选出三个不同的数字,然后把它们从小到大排列即可,这一共有 C(10, 3) 种方法。因此,情况 1 的发生概率就是 C(10, 3) / (10 · 92) = 4/27 。同理,情况 2 的发生概率也是 4/27 ,两者加起来就是 8/27 ;反过来,情况 3 和情况 4 出现的概率就是 1 - 8/27 = 19/27 了。

因此,我们最终要求的答案就是 1 + 19/27 + 19/27 + … + 19/27 + 0 = 1 + (n - 2) · 19/27 。

这个结论还会引出很多有意思的问题。在一个 29 位数当中,平均会产生 20 个单调区间。我们似乎发现了一个很不合理的地方:这岂不意味着,平均每个单调区间的长度只有 29/20 = 1.45 个数字吗?考虑到单调区间的长度不可能恰好是 1.45 个数字,为了得到 1.45 这个平均长度,一定有些区间的长度比 1.45 小,有些区间的长度比 1.45 大。有些区间的长度比 1.45 小,这不就意味着这些区间的长度为 1 吗?而一个区间的长度显然是不可能为 1 的。怎么回事?

其实, 29/20 = 1.45 这个算式是错的。在这 20 个单调区间中,除了最后一个区间以外,每一个区间的最后一个数与下一个区间的第一个数都是公共的。因此,这个 29 位数当中,有 19 个数被重复使用了。所以,在一个 29 位数当中,单调区间的平均长度应该是 (29 + 19) / 20 = 2.4 。

类似的, n 位数的单调区间的平均长度为 (n + (19/27)(n - 2)) / (1 + (19/27)(n - 2)) = (46n - 38) / (19n - 11) = (46 - 38/n) / (19 - 11/n) 。当 n 无穷大时,其极限为 46/19 。

 

Time complexity: O(n)

 

Source code: 

/** this code is made by crazyacking* Verdict: Accepted* Submission Date: 2015-05-25-14.59* Time: 0MS* Memory: 137KB*/#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long#define ULL unsigned long longusing namespace std;double a,b,c;int t,i,n;int main(){ scanf("%d",&t); for (i=1;i<=t;i++) { scanf("%d",&n); c=(double)n; a=1+(c-2)*19/27; b= (46 - 38/c) / (19 - 11/c); printf("Case #%d:\n%.6lf %.6lf\n",i,a,b); } return 0;}
View Code

转载地址:http://lphlx.baihongyu.com/

你可能感兴趣的文章
.NET Core2使用Azure云上的Iot-Hub服务
查看>>
Models of good programmer
查看>>
使用swoole编写简单的echo服务器
查看>>
信息系统管理师读书笔记之第5章 面向对象方法
查看>>
Django搭建后篇——启动服务器及创建视图
查看>>
Luogu4149 [IOI2011]Race
查看>>
关于Webpack详述系列文章 (第二篇)
查看>>
报表中经常遇到的一个头疼的问题是需要自动选择过去一个月的数据作为当前报表输出。网上查询了一些.NET 的C#例子,发现都实现的比较复杂...
查看>>
win7 安装 visual studio 2010 失败
查看>>
RTP QOS
查看>>
javascript for循环
查看>>
Hive之 hive-1.2.1 + hadoop 2.7.4 集群安装
查看>>
模论笔记1|习题与抄书笔记
查看>>
jQuery 添加元素
查看>>
Android解析
查看>>
MySQL 查询某一字段为数字的数据
查看>>
椭圆伸缩之思考
查看>>
PHP全栈开发(八):CSS Ⅶ 表格 style
查看>>
git 笔记
查看>>
极验滑动验证码的识别
查看>>